
Developer API Documentation
Revision 1 - August 2018

1

About the API
The API allows Quasar users to access their data via a RESTful web servce with a JSON response
format. If users would like to quickly export their data for building custom reports, or integrate
Quasar call scores with a third-party or in-house tool, the API provides real-time access to call
scores, agents, and teams.

About this Document
The intended audience for this document is software and web developers experienced with
RESTful web services. The reader should already be able to initiate HTTP requests and process
JSON responses.

2

Getting Started
The API endpoint is at:
	 https://callscores.com/lib

 The desired resource is communicated to the server by the client via the URL query string.
The value of the ‘action’ key determines the resource returned, and additional information
required for certain resources is encoded in additional key/value pairs. For instance, the query
string to retrieve data for all of the agents associated with the specified user is:
	 ?action=getAgents
and the query string to retrieve data on a specific agent is:
	 ?action=getAgent&id=000
with ‘000’ being the associated ID number for the desired agent. The full listing of available
resources and the required additional key/value pairs is included later in this document.

 In accordance with the stateless nature of RESTful architecture, no client authentication
information is stored between requests, each request MUST include a POST request body con-
taining an ‘id’ key with the user’s numeric ID and a ‘token’ key with the user’s API token. If the
user is unsure of their id or token, they can retrieve it at:
	 https://callscores.com/api

 An example of a well-formed API request would be:

POST /lib/?action=getAgents HTTP/1.1
Host: callscores.com
Content-Length: 79
Content-Type: application/x-www-form-urlencoded; charset=UTF-8

id=000&token=UsEr%T0K3N%Str1NG

 Example code for generating a suitable request with PHP or jQuery is included later in this
document.

3

Resource Actions
A listing of all the available resources including parameters and example return values.

getAgent
Description: Retrieves information for the specified agent numeric ID
Additional Parameters:
	 id - the desired agent’s numeric ID (required)
Example Query String: ?action=getAgent&id=12
Return Value:

{
 “agent_name”: “Peter”,
 “agent_id”: 12,
 “team_name”: “Impossible”,
 “team_id”: 2,
 “status”: “active”
}

Notes: ‘agent_name’ is the text description of the agent, ‘agent_id’ is the agent’s numeric ID,
‘team_name’ is the text description of the team the agent is currently associated with, ‘team_
id’ is the corresponding numeric ID, and ‘status’ is either ‘active’ or ‘inactive’. Agents with ‘in-
active’ status have been deleted by the user, but are eligible to be restored, and are included
for the purposes of associating historic score data with the appropriate agent. See ‘getAgents’
for additional information.

4

Resource Actions
A listing of all the available resources including parameters and example return values.

getAgents
Description: Retrieves the list of all agents associated with the specified user
Additional Parameters: None
Example Query String: ?action=getAgents
Return Value:

{
 “1”: {
 “agent_name”: “William”,
 “agent_id”: 1,
 “team_name”: null,
 “team_id”: null,
 “status”: “inactive”
 },
 “10”: {
 “agent_name”: “David”,
 “agent_id”: 10,
 “team_name”: “Bad Wolf”,
 “team_id”: 1,
 “status”: “active”
 },
 “12”: {
 “agent_name”: “Peter”,
 “agent_id”: 12,
 “team_name”: “Impossible”,
 “team_id”: 2,
 “status”: “active”
 }
}

Notes: The JSON object is indexed by the agent’s numeric ID; since agents are generally infre-
quently added or changed, the preferred behavior is for the client to locally cache the result of
getAgents for the duration of the session and retrieve details as needed from the local cache
rather than querying the getAgent resource repeatedly.

5

Resource Actions
A listing of all the available resources including parameters and example return values.

getCriterion
Description: Retrieves details of the specified scoring criterion.
Additional Parameters:
	 id - the numeric ID of the desired criterion (required)
Example Query String: ?action=getCriterion&id=868
Return Value:

{
 “criterion_id”: 868,
 “status”: “active”,
 “weight”: 10,
 “description”: “Answer phrase”,
 “options”: [
 “Not complete or poor”,
 null,
 null,
 “Partially complete or adequate”,
 “Complete”,
 “Complete, with genuine interest and positive attitude”
],
 “values”: [
 0,
 1,
 2,
 3,
 4,
 10
]
}

Notes: Like agents, criteria isn’t frequently added or changed, so the preferred behavior is to
locally cache the result of getCriteria for the duration of the session and retrieve details as
needed from the local cache rather than querying the getCriterion resource repeatedly. How-
ever, since the criteria is stored in various category objects when returned by getCriteria, the
most useful way to create a local cache may be to iterate over the category objects creating
a new array or object of the criteria objects contained therein indexed by numeric criterion
ID, for ease in subsequent retrieval by ID. Properties of the criterion object are the criterion’s
numeric ‘criterion_id’, ‘status’ as active or inactive (deleted), ‘weight’ within the category, the
text ‘description’, and two arrays - ‘options’ and ‘values’. ‘Options’ is an array containing the
text description of each possible grading option, ‘values’ is the associated point value. The
array indexes are correlated so that, for instance, options[3] corresponds with values[3]. The
exception is for criteria in categories of the ‘counter’ type, those have no ‘options’, and ‘values’
is a JSON object with ‘each’ and ‘max’ point values. See ‘getCriteria’ for more information on
retrieving categories.

6

Resource Actions
A listing of all the available resources including parameters and example return values.

getCriteria
Description: Retrieves all the scoring criteria for the specified user along with their categories.
Additional Parameters: None
Example Query String: ?action=getCriteria
Return Value:

{
 {
 “category_id”: 194,
 “weight”: 90,
 “type”: “unique”,
 “description”: “Greeting”,
 “criteria”: [
 {
 “criterion_id”: 868,
 “status”: “active”,
 “weight”: 10,
 “description”: “Answer phrase”,
 “options”: [
 “Not complete or poor”,
 null,
 null,
 “Partially complete or adequate”,
 “Complete”,
 “Complete, with genuine interest”
],
 “values”: [
 0,
 1,
 2,
 3,
 4,
 10
]
 }
]
 }

}

Notes: By far the most complex return object, further examples are included later in this
document, this version is simplified with only a single category with a single criterion. The
basic structure, however is arrays of JSON objects representing individual criteria inside parent
category objects; Category Object->Criteria Array->Criterion Object. The properties of the cate-
gory object are ‘category_id’ representing the category’s numeric ID, ‘weight’ used in ordering
(heavier weights are ordered last), ‘type’ of the category (unique meaning it’s only scored once
per call, cloneable meaning it can be scored an unlimited amount of times for each call - e.g.
agent holds, or counter whereby each occurence is worth points up to a specified maximum),
and the text ‘description’.

7

Resource Actions
A listing of all the available resources including parameters and example return values.

getScore
Description: Retrieves details of the specified evalution.
Additional Parameters:
	 id - the numeric ID of the desired evaluation (required)
Example Query String: ?action=getScore&id=1258
Return Value:

{
 “score_id”: 1258,
 “total_score”: 100,
 “agent_id”: 12,
 “reviewer_id”: 8,
 “team_id”: 0,
 “time_taken”: 1383771660,
 “time_scored”: 1383772034,
 “client_id”: “7314”,
 “logger_file”: “//LAN/path/to/file.mp3”,
 “comment”: “Lorem ipsum dolor sit amet“,
 “detail”: {
 “214”: [
 “2”
],
 “1178”: [
 “5”
],
 “4597”: [
 “5”,
		 “3”
],
 “4358”: [
 “2”
]
 },
 “status”: “active”
}

Notes: ‘score_id’ is the numeric ID of the evaluation, ‘total_score’ is the number of points
scored represented as a percentage of total points possible, ‘agent_id’ is the associated
agent’s numeric ID, ‘reviewer_id’ is the numeric ID of the reviewer that scored the call, ‘team_
id’ is the numeric ID of the team the agent was associated with when this call was scored (or
0, if the agent wasn’t assigned to a team), ‘time_taken’ and ‘time_scored’ are Unix timestamps
representing the date and time the call was taken and the evaluation was completed, respec-
tively, ‘client_id’ is the client ID the user associated this evaluation with, ‘logger_file’ is a file
path to the voice recording of the call on the user’s LAN, ‘comment’ is any comments entered,
‘detail’ is the scoring results of each individual criteria (or null if the user is utilizing a depre-
cated version of the default criteria, ask the user to contact support), and ‘status’ is ‘active’ or
‘inactive’ (deleted). The ‘detail’ object keys are criteria numeric IDs, and the values are arrays
of either the index of selected options corresponding with ‘options’ and ‘values’ in getCriteria
(a single option for unique criteria, or multiple ones for cloneable criteria, one for each clone
generated for this evaluation), or the final tally in the case of counters.

8

Resource Actions
A listing of all the available resources including parameters and example return values.

getScores
Description: Retrieves details of multiple specified evalutions.
Additional Parameters:
	 agent_id - evaluations for the agent with the specified numeric ID (optional)
	 client_id - evaluations associated with the client ID specified (optional)
	 comment - evaluations with a comment containing the specified string (optional)
	 include_deleted - whether or not to include inactive (deleted) evaluations (boolean, 	
		 default false)
	 limit - the number of evaluations to return (default 10, max 10000)
	 logger_file - evaluations where the voice log filename contains the specified
		 string (optional)
	 most_recent - in conjunction with limit, whether to fetch the most recent or least
		 recent evaluations (boolean, default true)
	 reviewer_id - evaluations completed by the the reviewer with the specified
		 numeric ID (optional)
	 scored_after - evaluations completed after the specified Unix timestamp (optional)
	 scored_before - evaluations completed before the specified Unix timestamp (optional)
	 taken_after - evaluations for calls taken after the specified Unix timestamp (optional)
	 taken_before - evaluations for calls taken before the specified Unix
		 timestamp (optional)
	 team_id - evaluations for the team with the specified numeric ID (optional)
	 total_score_greater_than - evaluations with a score higher than the specified
		 value (0-100) (optional)
	 total_score_less_than - evaluations with a score lower than the specified
		 value (0-100) (optional)

9

Resource Actions
A listing of all the available resources including parameters and example return values.

getScores
Example Query String: ?action=getScores&total_score_less_than=80&limit=2
Return Value:

{
 “1243”: {
 “score_id”: 1243,
 “total_score”: 68,
 “agent_id”: 10,
 “reviewer_id”: 5,
 “team_id”: 102,
 “time_taken”: 1312819440,
 “time_scored”: 1313075966,
 “client_id”: “585”,
 “logger_file”: null,
 “comment”: null,
 “detail”: null,
 “status”: “active”
 },
 “1245”: {
 “score_id”: 1245,
 “total_score”: 72,
 “agent_id”: 11,
 “reviewer_id”: 5,
 “team_id”: 108,
 “time_taken”: 1312821360,
 “time_scored”: 1313076381,
 “client_id”: “864”,
 “logger_file”: null,
 “comment”: null,
 “detail”: null,
 “status”: “active”
 }
}

Notes: See ‘getScore’ for more detail on individual properties of the score object. Note that all
parameters are optional, if your query string includes no parameters (‘?action=getScores’) by
default the 10 most recent active (not deleted) evaluations will be retrieved.

10

Additional Criteria Examples - Cloneable
This category is notable because of its ‘cloneable’ type - cloneable criteria can be duplicated
and graded multiple times on the same evaluation, for events that can happen multiple times
and need to be evaluated separately each time (like agent holds). Also note it contains an
‘inactive’ criterion - inactive (deleted) criteria are not displayed on the user’s scoring form, but
are retained to associate with historic evaluation data.

...	 {
 “category_id”: 612,
 “weight”: 40,
 “type”: “cloneable”,
 “description”: “Agent Hold”,
 “criteria”: [
 {
 “criterion_id”: 4599,
 “status”: “active”,
 “weight”: 10,
 “description”: “Agent’s request to hold”,
 “options”: [
 “Unacceptable”,
 null,
 null,
 “Mediocre”,
 null,
 “Good”
],
 “values”: [
 0,
 1,
 2,
 3,
 4,
 5
]
 },
 {
 “criterion_id”: 4357,
 “status”: “inactive”,
 “weight”: 20,
 “description”: “Agent’s return from hold was:”,
 “options”: [
 “Poor”,
 null,
 null,
 null,
 null,
 “Good”
],
 “values”: [
 0,
 1,
 2,
 3,
 4,
 5
]
 }
]
 }, ...

11

Additional Criteria Examples - Counter
Counter categories are most often used for criteria like pleases and thank yous, where each
use is worth a number of points up to a possible maximum. Because of that, ‘counter’ category
criteria don’t have the usual numeric array of options and values - options is an empty array,
values has two keys, ‘each’ and ‘max’. For instance, In this example, each ‘Please’ is worth 2
points up to a maximum of 3.

... {
 “category_id”: 613,
 “weight”: 70,
 “type”: “counter”,
 “description”: “Courtesy”,
 “criteria”: [
 {
 “criterion_id”: 4358,
 “status”: “active”,
 “weight”: 10,
 “description”: “Please”,
 “options”: [],
 “values”: {
 “each”: 2,
 “max”: 3
 }
 },
 {
 “criterion_id”: 4359,
 “status”: “active”,
 “weight”: 20,
 “description”: “Thank You”,
 “options”: [],
 “values”: {
 “each”: 2,
 “max”: 2
 }
 },
 {
 “criterion_id”: 4367,
 “status”: “active”,
 “weight”: 30,
 “description”: “Caller’s Name”,
 “options”: [],
 “values”: {
 “each”: 3,
 “max”: 5
 }
 }
]
 }, ...

12

Correlating Criteria and Score Detail Objects
This example illustrates how the detail object in a score from getScore or getScores correlates
with the criterion object from getCriterion or getCriteria. We can see the array for key ‘4597’ in
the score detail object has multiple values, which means the criterion with ID 4597 must be in
a cloneable category. If we retrieve the criterion with the numeric ID 4597, we see its descri-
tion is ‘Agent’s request to hold’. The two values given in the score detail object for this criteria
are 5 and 3, which are array indexes for the ‘options’ and ‘values’ arrays in the criterion object
- in this case we can see index 3 would correspond with ‘Mediocre’ and a point value of 5, and
index 5 would correspond with ‘Good’ and a point value of 10. Since the point value at index 5
is ‘10’, we know this criteria is worth a possible 10 points, and since it was applicable twice, we
can calculate that for this criterion on this call, this agent (with numeric ID 12) scored 15 of a
possible 20 points (10 of 10 for the first request to hold, and 5 of 10 for the second).

{
 “score_id”: 1258,
 “total_score”: 86,
 “agent_id”: 12,
 “reviewer_id”: 8,
 “team_id”: 0,
 “time_taken”: 1383771660,
 “time_scored”: 1383772034,
 “client_id”: “7314”,
 “logger_file”: “//LAN/path/to/file.mp3”,
 “comment”: “Lorem ipsum dolor ...“,
 “detail”: {
 “214”: [
 “2”
],
 “1178”: [
 “5”
],
 “4597”: [
 “5”,
 “3”
],
 “4358”: [
 “2”
]
 },
 “status”: “active”
}

{
 “criterion_id”: 4597,
 “status”: “active”,
 “weight”: 10,
 “description”: “Agent’s request to hold”,
 “options”: [
 “Unacceptable”,
 null,
 null,
 “Mediocre”,
 null,
 “Good”
],
 “values”: [
 0,
 1,
 2,
 5,
 8,
 10
]
}

13

Code Examples - PHP
The following example code in PHP 5 will obtain the 5 most recent evaluations with a score of
90% or higher.

<?php
$api_endpoint = 'https://callscores.com/lib'; // Base URL of API Endpoint
$auth = array(// Contains the user's numeric ID and API security token
 'id' => '000',
 'token' => 'U$3R%T0K3N%STR1NG%U$3R%T0K3N%STR1NG%U$3R%T0K3N%STR1NG%'
);
$action = 'getScores'; // The action we'd like to perform
$params = array(// Any additional parameters
 'total_score_greater_than' => '90',
 'limit' => '5'
);

// Generate the URL for our request based on the desired action
// and provided parameters
$request_url = "$api_endpoint/?action=$action&".http_build_query($params);

// Generate the HTTP headers and POST request containing the
// authentication data
$post_data = array(
 'http' => array(
 'header' => "Content-type: application/x-www-form-urlencoded\r\n",
 'method' => 'POST',
 'content' => http_build_query($auth)
)
);

// Send the request to the API server
$context = stream_context_create($post_data);
$json = file_get_contents($request_url, false, $context);

// Convert the response from JSON to a PHP object
$result = json_decode($json);

// $result is now a stdClass object containing the requested data
?>

14

Code Examples - jQuery
The following example code in jQuery 3 will obtain the 5 most recent evaluations with a score
of 90% or higher.

$(function(){
 var api_endpoint = 'https://callscores.com/lib'; // API Endpoint Base URL
 var auth = { // Contains the user's numeric ID and API security token
 id:'000',
 token:'U$3R%T0K3N%STR1NG%U$3R%T0K3N%STR1NG%U$3R%T0K3N%STR1NG%'
 }
 var action = 'getScores'; // The action we'd like to perform
 var params = { // Any additional parameters
 total_score_greater_than:'90',
 limit:'5'
 }

 // Generate the URL for our request based on the desired action
 //and provided parameters
 var request_url = api_endpoint+'/?action='+action+'&'+$.param(params);

 // Initiate an AJAX request
 $.ajax({
 url: request_url,
 type: 'post',
 contentType: 'application/x-www-form-urlencoded',
 data: $.param(auth),
 success: function(data,status,jQxhr){
 // var data is now an object containing the requested data
 console.dir(data);
 }
 });
});

